skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode

Abstract

Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO{sub 2}/FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO{sub 2}/FGNPA junction also drastically enhances TMR ratios up to ∼100%.

Authors:
; ;  [1];  [1];  [1]
  1. Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain)
Publication Date:
OSTI Identifier:
22391913
Resource Type:
Journal Article
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 105; Journal Issue: 18; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0003-6951
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COBALT; FERROMAGNETISM; GRAPHENE; HYDROGEN; MAGNETORESISTANCE; NANOSTRUCTURES; SILICA; SILICON OXIDES; SPIN; TUNNEL EFFECT

Citation Formats

Hashimoto, T., Kamikawa, S., Haruyama, J., E-mail: J-haru@ee.aoyama.ac.jp, Soriano, D., Pedersen, J. G., Department of Micro-and Nanotechnology, DTU Nanotech, Technical University of Denmark, DK-2800 Kongens Lyngby, Roche, S., and ICREA - Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode. United States: N. p., 2014. Web. doi:10.1063/1.4901279.
Hashimoto, T., Kamikawa, S., Haruyama, J., E-mail: J-haru@ee.aoyama.ac.jp, Soriano, D., Pedersen, J. G., Department of Micro-and Nanotechnology, DTU Nanotech, Technical University of Denmark, DK-2800 Kongens Lyngby, Roche, S., & ICREA - Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode. United States. https://doi.org/10.1063/1.4901279
Hashimoto, T., Kamikawa, S., Haruyama, J., E-mail: J-haru@ee.aoyama.ac.jp, Soriano, D., Pedersen, J. G., Department of Micro-and Nanotechnology, DTU Nanotech, Technical University of Denmark, DK-2800 Kongens Lyngby, Roche, S., and ICREA - Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona. 2014. "Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode". United States. https://doi.org/10.1063/1.4901279.
@article{osti_22391913,
title = {Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode},
author = {Hashimoto, T. and Kamikawa, S. and Haruyama, J., E-mail: J-haru@ee.aoyama.ac.jp and Soriano, D. and Pedersen, J. G. and Department of Micro-and Nanotechnology, DTU Nanotech, Technical University of Denmark, DK-2800 Kongens Lyngby and Roche, S. and ICREA - Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona},
abstractNote = {Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO{sub 2}/FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO{sub 2}/FGNPA junction also drastically enhances TMR ratios up to ∼100%.},
doi = {10.1063/1.4901279},
url = {https://www.osti.gov/biblio/22391913}, journal = {Applied Physics Letters},
issn = {0003-6951},
number = 18,
volume = 105,
place = {United States},
year = {Mon Nov 03 00:00:00 EST 2014},
month = {Mon Nov 03 00:00:00 EST 2014}
}