skip to main content

Title: Towards intelligent diagnostic system employing integration of mathematical and engineering model

The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG)more » and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well as mathematical model of clustering technique have been widely used in developing the medical diagnostic systems. The selected features will be classified using mathematical models that embedded engineering theory such as artificial intelligence, support vector machine, neural network and fuzzy-neuro system. These classifiers will provide the diagnostic results without human intervention. Among many publishable researches, several prototypes have been developed namely NeuralPap, Neural Mammo, and Cervix Kit. The former system (NeuralPap) is an automatic intelligent diagnostic system for classifying and distinguishing between the normal and cervical cancerous cells. Meanwhile, the Cervix Kit is a portable Field-programmable gate array (FPGA)-based cervical diagnostic kit that could automatically diagnose the cancerous cell based on the images obtained during sampling test. Besides the cervical diagnostic system, the Neural Mammo system is developed to specifically aid the diagnosis of breast cancer using a fine needle aspiration image.« less
Authors:
 [1]
  1. Imaging and Intelligent System Research Team (ISRT), School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)
Publication Date:
OSTI Identifier:
22391647
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1660; Journal Issue: 1; Conference: ICoMEIA 2014: International Conference on Mathematics, Engineering and Industrial Applications 2014, Penang (Malaysia), 28-30 May 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ARTIFICIAL INTELLIGENCE; COMPUTER CODES; DATA ACQUISITION; DIAGNOSIS; ELECTROCARDIOGRAMS; EVALUATION; FUZZY LOGIC; IMAGES; MAGNETIC RESONANCE; MAMMARY GLANDS; MATHEMATICAL MODELS; MICROCOMPUTERS; NEOPLASMS; NEURAL NETWORKS; NMR IMAGING; VECTORS