skip to main content

Title: Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal formore » cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.« less
Authors:
; ; ; ; ;  [1]
  1. Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)
Publication Date:
OSTI Identifier:
22391618
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1659; Journal Issue: 1; Conference: NuSTEC2014: Nuclear Science, Technology, and Engineering Conference 2014, Skudai, Johor (Malaysia), 11-13 Nov 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; AFTER-HEAT; AFTER-HEAT REMOVAL; AIR COOLED REACTORS; AIR FLOW; COMPUTERIZED SIMULATION; COOLING SYSTEMS; DATA ACQUISITION; DESIGN; HTGR TYPE REACTORS; RELIABILITY; SENSORS; STEADY-STATE CONDITIONS; STRATIFICATION; TEST FACILITIES; THERMAL HYDRAULICS