skip to main content

SciTech ConnectSciTech Connect

Title: Guided basin-hopping search of small boron clusters with density functional theory

The search for the ground state structures of Boron clusters has been a difficult computational task due to the unique metalloid nature of Boron atom. Previous research works had overcome the problem in the search of the Boron ground-state structures by adding symmetry constraints prior to the process of locating the local minima in the potential energy surface (PES) of the Boron clusters. In this work, we shown that, with the deployment of a novel computational approach that incorporates density functional theory (DFT) into a guided global optimization search algorithm based on basin-hopping, it is possible to directly locate the local minima of small Boron clusters in the PES at the DFT level. The ground-state structures search algorithm as proposed in this work is initiated randomly and needs not a priori symmetry constraint artificially imposed throughout the search process. Small sized Boron clusters so obtained compare well to the results obtained by similar calculations in the literature. The electronic properties of each structures obtained are calculated within the DFT framework.
Authors:
;  [1] ;  [2]
  1. School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)
  2. Faculty of Engineering and Technology, Multimedia University, Melacca Campus, 75450 Melaka (Malaysia)
Publication Date:
OSTI Identifier:
22391532
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1657; Journal Issue: 1; Conference: PERFIK 2014: National Physics Conference 2014, Kuala Lumpur (Malaysia), 18-19 Nov 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS; ALGORITHMS; ATOMIC CLUSTERS; ATOMS; BORON; COMPARATIVE EVALUATIONS; DENSITY FUNCTIONAL METHOD; GROUND STATES; LIMITING VALUES; OPTIMIZATION; POTENTIAL ENERGY; RANDOMNESS; SURFACES; SYMMETRY