skip to main content

SciTech ConnectSciTech Connect

Title: Combining of different data pools for calculating a reliable POD for real defects

Real defects are essential for the evaluation of the reliability of non destructive testing (NDT) methods, especially in relation to the integrity of components. But in most of the cases the amount of available real defects is not sufficient to evaluate the system. Model-assisted and transfer functions are one way to handle that challenge. This study is focused on a combination of different data pools to create a sufficient amount of data for the reliability estimation. A widespread approach for calculating the Probability of Detection (POD) was used on a radiographic testing (RT) method. The highest contrast to noise ratio (CNR) of each indication is usually selected as the signal in the 'â vs. a' (signal-response) approach for RT. By combining real and artificial defects (flat bottom holes, side drill holes, flat bottom squares, notches, etc) in RT the highest signals are close to each other, but the process of creating and evaluating real defects is much more complex. The solution is seen in the combination of real and artificial data using a weighted least square approach. The weights for real or artificial data were based on the importance, the value and the different detection behavior of the different data.more » For comparison, the alternative combination through the Bayesian Updating was also applied. As verification, a data pool with a large amount of real data was available. In an advanced approach for evaluating the digital RT data, the size of the indication (perpendicular to the X-ray beam) was introduced as additional information. The signal now consists of the CNR and the area of the indication. The detectability is changing depending on the area of the indication, a fact that was ignored in the previous POD calculations for RT. This points out that a weighted least square approach to pool the data might no longer be adequate. The Bayesian Updating of the estimated parameters of the relationship between the signal field (the area of the indication) and the geometry of the defects is seen as the appropriate model to combine the different defect types in a useful and meaningful way. This work was carried out together with the Finnish company for spent nuclear fuel and waste management - Posiva Oy. The digital RT is one of the NDT methods that might be used for the inspection of the weld of the copper canister to be used for the spent nuclear fuel in the Scandinavian concept of final disposal.« less
Authors:
;  [1] ;  [2]
  1. Federal Institute for Materials Testing and Research, Berlin (Germany)
  2. Posiva Oy, Eurajoki (Finland)
Publication Date:
OSTI Identifier:
22391241
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1650; Journal Issue: 1; Conference: 41. Annual Review of Progress in Quantitative Nondestructive Evaluation, Boise, ID (United States), 20-25 Jul 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BOREHOLES; COMPARATIVE EVALUATIONS; CONTAINERS; COPPER; DEFECTS; INSPECTION; LEAST SQUARE FIT; MATHEMATICAL MODELS; NONDESTRUCTIVE TESTING; RADIOACTIVE WASTE MANAGEMENT; SPENT FUELS; TRANSFER FUNCTIONS; WELDED JOINTS; X RADIATION