skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GPR measurements of attenuation in concrete

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4914600· OSTI ID:22391201
;  [1]
  1. Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, Ames, IA 50011-3042 (United States)

Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

OSTI ID:
22391201
Journal Information:
AIP Conference Proceedings, Vol. 1650, Issue 1; Conference: 41. Annual Review of Progress in Quantitative Nondestructive Evaluation, Boise, ID (United States), 20-25 Jul 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English