skip to main content

Title: The geometrical structure of quantum theory as a natural generalization of information geometry

Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.
Authors:
 [1]
  1. Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)
Publication Date:
OSTI Identifier:
22390860
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1641; Journal Issue: 1; Conference: MAXENT 2014: Conference on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Clos Luce, Amboise (France), 21-26 Sep 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; GEOMETRY; HILBERT SPACE; INFORMATION; INFORMATION THEORY; QUANTUM MECHANICS