skip to main content

SciTech ConnectSciTech Connect

Title: Reliable operation of the Brookhaven EBIS for highly charged ion production for RHIC and NSRL

An Electron Beam Ion Source for the Relativistic Heavy Ion Collider (RHIC EBIS) was commissioned at Brookhaven in September 2010 and since then it routinely supplies ions for RHIC and NASA Space Radiation Laboratory (NSRL) as the main source of highly charged ions from Helium to Uranium. Using three external primary ion sources for 1+ injection into the EBIS and an electrostatic injection beam line, ion species at the EBIS exit can be switched in 0.2 s. A total of 16 different ion species have been produced to date. The length and the capacity of the ion trap have been increased by 20% by extending the trap by two more drift tubes, compared with the original design. The fraction of Au{sup 32+} in the EBIS Au spectrum is approximately 12% for 70-80% electron beam neutralization and 8 pulses operation in a 5 Hertz train and 4-5 s super cycle. For single pulse per super cycle operation and 25% electron beam neutralization, the EBIS achieves the theoretical Au{sup 32+} fractional output of 18%. Long term stability has been very good with availability of the beam from RHIC EBIS during 2012 and 2014 RHIC runs approximately 99.8%.
Authors:
; ; ; ; ; ; ; ; ;  [1]
  1. Brookhaven National Laboratory, Upton, NY 11973 (United States)
Publication Date:
OSTI Identifier:
22390854
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1640; Journal Issue: 1; Conference: 12. International Symposium on Electron Beam Ion Sources and Traps, East Lansing, MI (United States), 18-21 May 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; APPROXIMATIONS; BEAM INJECTION; BROOKHAVEN RHIC; COMPARATIVE EVALUATIONS; DESIGN; DRIFT TUBES; ELECTRON BEAM ION SOURCES; ELECTRON BEAMS; GOLD IONS; MULTICHARGED IONS; NASA; OPERATION; SPACE; TRAPS