skip to main content

Title: Design and numerical characterization of a crossover EBIS

For the investigation of highly charged ions, a crossover EBIS (XEBIS) was developed at the University of Frankfurt. In contrast to conventional EBIS/T devices the compression of the electron beam is achieved by electrostatic focusing to a crossover point in the interaction region. This concept allows a compact and simple design. Simulations performed with EGUN show a perveance of 2.1×10{sup −7} A/V{sup 3/2} for the realized gun system. In the interaction region the electron beam has a density of around 10 A/cm{sup 2} and a minimum radius of 0.15 mm. The XEBIS has a total length of 112 mm with a trap length of 26 mm. It is designed for electron beam energies of up to 6 keV/q. The storage capacity of the trap region is in the order of 1×10{sup 8} charges. Charge state breeding studies with CBSIM indicate for the noble gases as maximal achievable charge state Ar{sup 16+}, Kr{sup 30+} and Xe{sup 35+}. Thus ion beam currents of around 2.04 nA assuming 50 Hz repetition rate can be expected. The emittance of the extracted beam is approximated to 8 mm mrad. After completion of the construction phase, the XEBIS will be installed for first performance investigations atmore » a dedicated test bench, equipped with a fast Faraday Cup (FC), a retarding field spectrometer, a luminescence screen and optical diagnostics. Subsequently the XEBIS will serve as source for highly charged ions at different experimental setups.« less
Authors:
; ;  [1] ;  [2]
  1. Institute of Applied Physics, Goethe University Frankfurt, Frankfurt am Main, HE (Germany)
  2. Institute of Applied Physics, Goethe University Frankfurt, Frankfurt am Main, HE, Germany and GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, HE (Germany)
Publication Date:
OSTI Identifier:
22390845
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1640; Journal Issue: 1; Conference: 12. International Symposium on Electron Beam Ion Sources and Traps, East Lansing, MI (United States), 18-21 May 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; APPROXIMATIONS; ARGON IONS; BEAM CURRENTS; CAPACITY; CHARGE STATES; COMPRESSION; COMPUTERIZED SIMULATION; E CODES; ELECTRON BEAM ION SOURCES; ELECTRON BEAMS; FARADAY CUPS; KEV RANGE; KRYPTON IONS; LUMINESCENCE; MULTICHARGED IONS; TRAPS; XENON IONS