skip to main content

SciTech ConnectSciTech Connect

Title: Early time studies of cylindrical liner implosions at 1 MA on COBRA

Tests of the magnetized liner inertial fusion (MagLIF) concept will make use of the 27 MA Z machine at Sandia National Laboratories, Albuquerque, to implode a cylindrical metal liner to compress and heat preheated, magnetized plasma contained within it. While most pulsed power machines produce much lower currents than the Z-machine, there are issues that can still be addressed on smaller scale facilities. Recent work on the Cornell Beam Research Accelerator (COBRA) has made use of 10 mm long and 4 mm diameter metal liners having different wall thicknesses to study the initiation of plasma on the liner’s surface as well as axial magnetic field compression [P.-A. Gourdain et al., Nucl. Fusion 53, 083006 (2013)]. This report presents experimental results with non-imploding liners, investigating the impact the liner’s surface structure has on initiation and ablation. Extreme ultraviolet (XUV) imaging and optical 12 frame camera imaging were used to observe and assess emission non-uniformities as they developed. Axial and side-on interferometry was used to determine the distribution of plasma near the liner surface, including the impact of non-uniformities during the plasma initiation and ablation phases of the experiments.
Authors:
; ; ; ; ; ; ;  [1]
  1. Laboratory of Plasma Studies, Cornell University, Ithaca, NY 14850 (United States)
Publication Date:
OSTI Identifier:
22390829
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1639; Journal Issue: 1; Conference: 9. International Conference on Dense Z Pinches, Napa, CA (United States), 3-7 Aug 2014; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ABLATION; COMPRESSION; CYLINDRICAL CONFIGURATION; EXTREME ULTRAVIOLET RADIATION; HEAT; ICF DEVICES; INERTIAL CONFINEMENT; INERTIAL FUSION DRIVERS; INTERFEROMETRY; LASER IMPLOSIONS; LINERS; MAGNETIC FIELDS; PLASMA; PLASMA PRODUCTION; SANDIA NATIONAL LABORATORIES; SURFACES