skip to main content

SciTech ConnectSciTech Connect

Title: The NIFTY way of Bayesian signal inference

We introduce NIFTY, 'Numerical Information Field Theory', a software package for the development of Bayesian signal inference algorithms that operate independently from any underlying spatial grid and its resolution. A large number of Bayesian and Maximum Entropy methods for 1D signal reconstruction, 2D imaging, as well as 3D tomography, appear formally similar, but one often finds individualized implementations that are neither flexible nor easily transferable. Signal inference in the framework of NIFTY can be done in an abstract way, such that algorithms, prototyped in 1D, can be applied to real world problems in higher-dimensional settings. NIFTY as a versatile library is applicable and already has been applied in 1D, 2D, 3D and spherical settings. A recent application is the D{sup 3}PO algorithm targeting the non-trivial task of denoising, deconvolving, and decomposing photon observations in high energy astronomy.
Authors:
 [1]
  1. Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany, and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München (Germany)
Publication Date:
OSTI Identifier:
22390762
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1636; Journal Issue: 1; Conference: MaxEnt 2013: 33. International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Canberra, ACT (Australia), 15-20 Dec 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGORITHMS; ASTRONOMY; CALCULATION METHODS; COMPUTER CODES; ENTROPY; FIELD THEORIES; GRIDS; INFORMATION THEORY; PHOTONS; RESOLUTION; SIGNALS; SPHERICAL CONFIGURATION; TOMOGRAPHY