skip to main content

Title: Compressed quantum simulation

Here, I summarize the results presented in B. Kraus, Phys. Rev. Lett. 107, 250503 (2011). Recently, it has been shown that certain circuits, the so-called match gate circuits, can be compressed to an exponentially smaller universal quantum computation. We use this result to demonstrate that the simulation of a 1-D Ising chain consisting of n qubits can be performed on a universal quantum computer running on only log(n) qubits. We show how the adiabatic evolution can be simulated on this exponentially smaller system and how the magnetization can be measured. Since the Ising model displays a quantum phase transition, this result implies that a quantum phase transition of a very large system can be observed with current technology.
Authors:
 [1]
  1. Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)
Publication Date:
OSTI Identifier:
22390668
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1633; Journal Issue: 1; Conference: 11. International Conference on Quantum Communication, Measurement and Computation, Vienna (Austria), 30 Jul - 3 Aug 2012; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; EVOLUTION; ISING MODEL; MAGNETIZATION; PHASE TRANSFORMATIONS; QUANTUM COMPUTERS; QUANTUM MECHANICS; QUBITS