skip to main content

Title: Long-distance quantum key distribution with imperfect devices

Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secure key generation rate per memory, R{sub QKD}. The two schemes under investigation are the one proposed by Duan et al. in [Nat. 414, 413 (2001)] and that of Sangouard et al. proposed in [Phys. Rev. A 76, 050301 (2007)]. We consider various sources of imperfections in the latter protocol, such as a nonzero double-photon probability for the source, dark count per pulse, channel loss and inefficiencies in photodetectors and memories, to find the rate for different nesting levels. We determine the maximum value of the double-photon probability beyond which it is not possible to share a secret key anymore. We find the crossover distance for up to three nesting levels. We finally compare the two protocols.
Authors:
;  [1]
  1. School of Electronic and Electrical Engineering, University of Leeds (United Kingdom)
Publication Date:
OSTI Identifier:
22390665
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1633; Journal Issue: 1; Conference: 11. International Conference on Quantum Communication, Measurement and Computation, Vienna (Austria), 30 Jul - 3 Aug 2012; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COMPARATIVE EVALUATIONS; DISTANCE; PHOTODETECTORS; PHOTONS; PROBABILISTIC ESTIMATION; PROBABILITY; PULSES; QUANTUM MECHANICS; SECRECY PROTECTION