skip to main content

SciTech ConnectSciTech Connect

Title: The IceCube data acquisition system for galactic core collapse supernova searches

The IceCube Neutrino Observatory was designed to detect highly energetic neutrinos. The detector was built as a lattice of 5160 photomultiplier tubes monitoring one cubic kilometer of clear Antarctic ice. Due to low photomultiplier dark noise rates in the cold and radio-pure ice, IceCube is also able to detect bursts of O(10MeV) neutrinos expected to be emitted from core collapse supernovae. The detector will provide the world’s highest statistical precision for the lightcurves of galactic supernovae by observing an induced collective rise in all photomultiplier rates [1]. This paper presents the supernova data acquisition system, the search algorithms for galactic supernovae, as well as the recently implemented HitSpooling DAQ extension. HitSpooling will overcome the current limitation of transmitting photomultiplier rates in intervals of 1.6384 ms by storing all recorded time-stamped hits for supernova candidate triggers. From the corresponding event-based information, the average neutrino energy can be estimated and the background induced by detector noise and atmospheric muons can be reduced.
Authors:
 [1] ;
  1. Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany)
Publication Date:
OSTI Identifier:
22390622
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1630; Journal Issue: 1; Conference: VLVvT 13: 6. International Workshop on Very Large Volumte Neutrino Telescopes, Stockholm (Sweden), 5-7 Aug 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; ACCURACY; ALGORITHMS; ANTARCTIC REGIONS; CHERENKOV COUNTERS; DATA ACQUISITION SYSTEMS; DESIGN; ICE; MULTIPARTICLE SPECTROMETERS; NEUTRINO DETECTION; PARTICLE IDENTIFICATION; SCINTILLATION COUNTERS; SUPERNOVAE; TELESCOPE COUNTERS