skip to main content

Title: Numerical simulation of tectonic plates motion and seismic process in Central Asia

An evolutionary approach proposed in [1, 2] combining the achievements of traditional macroscopic theory of solid mechanics and basic ideas of nonlinear dynamics is applied in a numerical simulation of present-day tectonic plates motion and seismic process in Central Asia. Relative values of strength parameters of rigid blocks with respect to the soft zones were characterized by the δ parameter that was varied in the numerical experiments within δ = 1.1–1.8 for different groups of the zonal-block divisibility. In general, the numerical simulations of tectonic block motion and accompanying seismic process in the model geomedium indicate that the numerical solutions of the solid mechanics equations characterize its deformation as a typical behavior of a nonlinear dynamic system under conditions of self-organized criticality.
Authors:
 [1] ; ;  [2]
  1. Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)
  2. Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk State University, Tomsk, 634050 (Russian Federation)
Publication Date:
OSTI Identifier:
22390438
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1623; Journal Issue: 1; Conference: International Conference on Physical Mesomechanics of Multilevel Systems 2014, Tomsk (Russian Federation), 3-5 Sep 2014; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; ASIA; COMPUTERIZED SIMULATION; DEFORMATION; GEOPHYSICS; NONLINEAR PROBLEMS; NUMERICAL SOLUTION; PLATES; SEISMICITY; SEISMOLOGY; TECTONICS; ZONES