skip to main content

SciTech ConnectSciTech Connect

Title: Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a densitymore » of r{sub s}=0.912.« less
Authors:
 [1] ;  [2]
  1. National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102, Mianyang, Sichuan, 621900 (China)
  2. (United States)
Publication Date:
OSTI Identifier:
22382190
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Computational Physics; Journal Volume: 283; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COMPARATIVE EVALUATIONS; COMPUTERIZED SIMULATION; CRYSTALS; EV RANGE; EXTRAPOLATION; FCC LATTICES; FREE ENERGY; HYDROGEN; MOLECULAR DYNAMICS METHOD; PATH INTEGRALS; POTENTIAL ENERGY; POTENTIALS; PRESSURE RANGE GIGA PA; PROTONS; STATISTICS; SURFACES