skip to main content

Title: Absorbing boundary conditions for relativistic quantum mechanics equations

This paper is devoted to the derivation of absorbing boundary conditions for the Klein–Gordon and Dirac equations modeling quantum and relativistic particles subject to classical electromagnetic fields. Microlocal analysis is the main ingredient in the derivation of these boundary conditions, which are obtained in the form of pseudo-differential equations. Basic numerical schemes are derived and analyzed to illustrate the accuracy of the derived boundary conditions.
Authors:
 [1] ;  [2] ;  [3] ;  [4] ;  [3] ;  [5] ;  [6] ;  [4]
  1. Institut Elie Cartan de Lorraine, Université de Lorraine, F-54506 Vandoeuvre-lès-Nancy Cedex (France)
  2. (France)
  3. School of Mathematics and Statistics, Carleton University, Ottawa, K1S 5B6 (Canada)
  4. (Canada)
  5. Centre de Recherches Mathématiques, Université de Montréal, Montréal, H3T 1J4 (Canada)
  6. Laboratoire de Chimie Théorique, Université de Sherbrooke, Sherbrooke, J1K 2R1 (Canada)
Publication Date:
OSTI Identifier:
22382145
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Computational Physics; Journal Volume: 277; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ACCURACY; APPROXIMATIONS; BOUNDARY CONDITIONS; DIRAC EQUATION; KLEIN-GORDON EQUATION; QUANTUM MECHANICS; RELATIVISTIC RANGE