skip to main content

SciTech ConnectSciTech Connect

Title: The magnitude-redshift relation in a realistic inhomogeneous universe

The light rays from a source are subject to a local inhomogeneous geometry generated by inhomogeneous matter distribution as well as the existence of collapsed objects. In this paper we investigate the effect of inhomogeneities and the existence of collapsed objects on the propagation of light rays and evaluate changes in the magnitude-redshift relation from the standard relationship found in a homogeneous FRW universe. We give the expression of the correlation function and the variance for the perturbation of apparent magnitude, and calculate it numerically by using the non-linear matter power spectrum. We use the lognormal probability distribution function for the density contrast and spherical collapse model to truncate the power spectrum in order to estimate the blocking effect by collapsed objects. We find that the uncertainties in Ω{sub m} is ∼ 0.02, and that of w is ∼ 0.04 . We also discuss a possible method to extract these effects from real data which contains intrinsic ambiguities associated with the absolute magnitude.
Authors:
;  [1]
  1. Astronomical Institute, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan)
Publication Date:
OSTI Identifier:
22382058
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2014; Journal Issue: 12; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CORRELATION FUNCTIONS; DENSITY; DISTRIBUTION FUNCTIONS; GEOMETRY; MATTER; NONLINEAR PROBLEMS; PERTURBATION THEORY; RED SHIFT; SPECTRA; SPHERICAL CONFIGURATION; UNIVERSE