skip to main content

Title: Fermionic dark matter with pseudo-scalar Yukawa interaction

We consider a renormalizable extension of the standard model whose fermionic dark matter (DM) candidate interacts with a real singlet pseudo-scalar via a pseudo-scalar Yukawa term while we assume that the full Lagrangian is CP-conserved in the classical level. When the pseudo-scalar boson develops a non-zero vacuum expectation value, spontaneous CP-violation occurs and this provides a CP-violated interaction of the dark sector with the SM particles through mixing between the Higgs-like boson and the SM-like Higgs boson. This scenario suggests a minimal number of free parameters. Focusing mainly on the indirect detection observables, we calculate the dark matter annihilation cross section and then compute the DM relic density in the range up to m{sub DM} = 300 GeV.We then find viable regions in the parameter space constrained by the observed DM relic abundance as well as invisible Higgs decay width in the light of 125 GeV Higgs discovery at the LHC. We find that within the constrained region of the parameter space, there exists a model with dark matter mass m{sub DM} ∼ 38 GeV annihilating predominantly into b quarks, which can explain the Fermi-LAT galactic gamma-ray excess.
Authors:
 [1]
  1. Physics Department, Faculty of Sciences, Arak University, Arak, 38156-8-8349 (Iran, Islamic Republic of)
Publication Date:
OSTI Identifier:
22382036
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2015; Journal Issue: 01; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ANNIHILATION; B QUARKS; CERN LHC; CP INVARIANCE; GAMMA RADIATION; GEV RANGE 100-1000; HIGGS BOSONS; HIGGS MODEL; LAGRANGIAN FUNCTION; NONLUMINOUS MATTER; SCALARS; STANDARD MODEL