skip to main content

SciTech ConnectSciTech Connect

Title: Self-scattering for Dark Matter with an excited state

Self-interacting dark matter scenarios have recently attracted much attention, as a possible means to alleviate the tension between N-body simulations and observations of the dark matter distribution on galactic and sub-galactic scales. The presence of internal structure for the dark matter—for example, a nearly-degenerate state in the spectrum that could decay, or be collisionally excited or de-excited—has also been proposed as a possible means to address these discrepancies. Such internal structure can be a source of interesting signatures in direct and indirect dark matter searches, for example providing a novel explanation for the 3.5 keV line recently observed in galaxies and galaxy clusters. We analyze a simple model of dark matter self-scattering including a nearly-degenerate excited state, and develop an accurate analytic approximation for the elastic and inelastic s-wave cross sections, which is valid outside the perturbative regime provided the particle velocity is sufficiently low (this condition is also required for the s-wave to dominate over higher partial waves). We anticipate our results will be useful in incorporating inelastic self-scattering into N-body simulations, in order to study the quantitative impact of nearly-degenerate states in the dark matter spectrum on galactic structure and dynamics, and in computing the indirect signatures ofmore » multi-state dark matter.« less
Authors:
;  [1]
  1. Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)
Publication Date:
OSTI Identifier:
22382028
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2015; Journal Issue: 01; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; APPROXIMATIONS; CROSS SECTIONS; DECAY; DISTRIBUTION; EXCITED STATES; GALAXIES; KEV RANGE 01-10; NONLUMINOUS MATTER; S WAVES; SCATTERING; SIMULATION; SPECTRA; VELOCITY