skip to main content

Title: Dark matter in the minimal inverse seesaw mechanism

We consider the possibility of simultaneously addressing the dark matter problem and neutrino mass generation in the minimal inverse seesaw realisation. The Standard Model is extended by two right-handed neutrinos and three sterile fermionic states, leading to three light active neutrino mass eigenstates, two pairs of (heavy) pseudo-Dirac mass eigenstates and one (mostly) sterile state with mass around the keV, possibly providing a dark matter candidate, and accounting for the recently observed and still unidentified monochromatic 3.5 keV line in galaxy cluster spectra. The conventional production mechanism through oscillation from active neutrinos can account only for ∼ 43% of the observed relic density. This can be slightly increased to ∼ 48% when including effects of entropy injection from the decay of light (with mass below 20 GeV) pseudo-Dirac neutrinos. The correct relic density can be achieved through freeze-in from the decay of heavy (above the Higgs mass) pseudo-Dirac neutrinos. This production is only effective for a limited range of masses, such that the decay occurs not too far from the electroweak phase transition. We thus propose a simple extension of the inverse seesaw framework, with an extra scalar singlet coupling to both the Higgs and the sterile neutrinos, which allows to achievemore » the correct dark matter abundance in a broader region of the parameter space, in particular in the low mass region for the pseudo-Dirac neutrinos.« less
Authors:
;  [1] ;  [2]
  1. Laboratoire de Physique Théorique, Université de Paris-Sud 11, Bât. 210, 91405 Orsay Cedex (France)
  2. Institute for theoretical physics, Georg-August University Göttingen, Friedrich-Hund-Platz 1, Göttingen, D-37077 Germany (Germany)
Publication Date:
OSTI Identifier:
22375851
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2014; Journal Issue: 10; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABUNDANCE; COUPLING; DECAY; EIGENSTATES; ENTROPY; GALAXY CLUSTERS; GEV RANGE 10-100; HIGGS BOSONS; HIGGS MODEL; KEV RANGE 01-10; MASS; MATHEMATICAL SPACE; MONOCHROMATIC RADIATION; NEUTRINOS; NONLUMINOUS MATTER; PHASE TRANSFORMATIONS; SCALARS; SPECTRA; STANDARD MODEL