skip to main content

SciTech ConnectSciTech Connect

Title: Negative running of the spectral index, hemispherical asymmetry and the consistency of Planck with large r

Planck favours a negative running of the spectral index, with the likelihood being dominated by low multipoles l ∼< 50 and no preference for running at higher l. A negative spectral index is also necessary for the 2- Planck upper bound on the tensor-to-scalar ratio r to be consistent with values significantly larger than 0.1. Planck has also observed a hemispherical asymmetry of the CMB power spectrum, again mostly at low multipoles. Here we consider whether the physics responsible for the hemispherical asymmetry could also account for the negative running of the spectral index and the consistency of Planck with a large value of r. A negative running of the spectral index can be generated if the hemispherical asymmetry is due to a scale- and space-dependent modulation which suppresses the CMB power spectrum at low multipoles. We show that the observed hemispherical asymmetry at low l can be generated while satisfying constraints on the asymmetry at higher l and generating a negative spectral index of the right magnitude to account for the Planck observation and to allow Planck to be consistent with a large value of r.
Authors:
 [1]
  1. Dept. of Physics, University of Lancaster, Lancaster, LA1 4YB U.K. (United Kingdom)
Publication Date:
OSTI Identifier:
22375756
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2014; Journal Issue: 11; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASYMMETRY; MODULATION; MULTIPOLES; SCALARS; SPACE DEPENDENCE; SPECTRA; TENSORS