skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone

Journal Article · · Acta crystallographica. Section F, Structural biology communications
 [1];  [2]; ; ; ;  [1]
  1. BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949 (United States)
  2. Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110 (United States)

BMN 673, a novel PARP1/2 inhibitor in clinical development with substantial tumor cytotoxicity, forms extensive hydrogen-bonding and π-stacking in the nicotinamide pocket, with its unique disubstituted scaffold extending towards the less conserved edges of the pocket. These interactions might provide structural insight into the ability of BMN 673 to both inhibit catalysis and affect DNA-binding activity. Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers. In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity.

OSTI ID:
22375701
Journal Information:
Acta crystallographica. Section F, Structural biology communications, Vol. 70, Issue Pt 9; Other Information: PMCID: PMC4157409; PMID: 25195882; PUBLISHER-ID: no5058; OAI: oai:pubmedcentral.nih.gov:4157409; Copyright (c) Aoyagi-Scharber et al. 2014; This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.; Country of input: International Atomic Energy Agency (IAEA); ISSN 2053-230X
Country of Publication:
United States
Language:
English

Similar Records

Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2
Journal Article · Thu Jul 31 00:00:00 EDT 2014 · Acta Crystallographica. Section D: Biological Crystallography (Online) · OSTI ID:22375701

PARP1 inhibitors attenuate AKT phosphorylation via the upregulation of PHLPP1
Journal Article · Fri Aug 26 00:00:00 EDT 2011 · Biochemical and Biophysical Research Communications · OSTI ID:22375701

Effect of mild temperature shift on poly(ADP-ribose) and γH2AX levels in cultured cells
Journal Article · Fri Aug 05 00:00:00 EDT 2016 · Biochemical and Biophysical Research Communications · OSTI ID:22375701