skip to main content

Title: Higher order dark matter annihilations in the Sun and implications for IceCube

Dark matter particles captured in the Sun would annihilate producing a neutrino flux that could be detected at the Earth. In some channels, however, the neutrino flux lies in the MeV range and is thus undetectable at IceCube, namely when the dark matter particles annihilate into e{sup +}e{sup −}, μ{sup +}μ{sup −} or light quarks. On the other hand, the same interaction that mediates the annihilations into light fermions also leads, via higher order effects, to the production of weak gauge bosons (and in the case of quarks also gluons) that generate a high energy neutrino flux potentially observable at IceCube. We consider in this paper tree level annihilations into a fermion-antifermion pair with the associated emission of one gauge boson and one loop annihilations into two gauge bosons, and we calculate the limits on the scattering cross section of dark matter particles with protons in scenarios where the dark matter particle couples to electrons, muons or light quarks from the non-observation of an excess of neutrino events in the direction of the Sun. We find that the limits on the spin-dependent scattering cross section are, for some scenarios, stronger than the limits from direct detection experiments.
Authors:
; ;  [1]
  1. Physik-Department T30d, Technische Universität München, James-Franck-Straße, Garching, 85748 (Germany)
Publication Date:
OSTI Identifier:
22373663
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2014; Journal Issue: 04; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ANNIHILATION; CROSS SECTIONS; D QUARKS; GLUONS; MEV RANGE; MUONS; NEUTRINOS; NONLUMINOUS MATTER; POSITRONS; PROTONS; SCATTERING; SPIN; SUN; U QUARKS