skip to main content

Title: Tensor to scalar ratio and large scale power suppression from pre-slow roll initial conditions

We study the corrections to the power spectra of curvature and tensor perturbations and the tensor-to-scalar ratio r in single field slow roll inflation with standard kinetic term due to initial conditions imprinted by a ''fast-roll'' stage prior to slow roll. For a wide range of initial inflaton kinetic energy, this stage lasts only a few e-folds and merges smoothly with slow-roll thereby leading to non-Bunch-Davies initial conditions for modes that exit the Hubble radius during slow roll. We describe a program that yields the dynamics in the fast-roll stage while matching to the slow roll stage in a manner that is independent of the inflationary potentials. Corrections to the power spectra are encoded in a ''transfer function'' for initial conditions T{sub α}(k), P{sub α}(k) = P{sup BD}{sub α}(k)T{sub α}(k), implying a modification of the ''consistency condition'' for the tensor to scalar ratio at a pivot scale k{sub 0}: r(k{sub 0}) = −8n{sub T}(k{sub 0}) [T{sub T}(k{sub 0})/T{sub R}(k{sub 0})]. We obtain T{sub α}(k) to leading order in a Born approximation valid for modes of observational relevance today. A fit yields T{sub α}(k) = 1+A{sub α}k{sup −p}cos [2πωk/H{sub sr}+φ{sub α}], with 1.5∼
Authors:
;  [1]
  1. Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara St, Pittsburgh, PA 15260 (United States)
Publication Date:
OSTI Identifier:
22373565
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2014; Journal Issue: 05; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CORRECTIONS; COSMOLOGICAL INFLATION; KINETIC ENERGY; PERTURBATION THEORY; POTENTIAL ENERGY; SCALARS; TENSORS; TRANSFER FUNCTIONS