skip to main content

SciTech ConnectSciTech Connect

Title: Probing correlations of early magnetic fields using μ-distortion

The damping of a non-uniform magnetic field between the redshifts of about 10{sup 4} and 10{sup 6} injects energy into the photon-baryon plasma and causes the CMB to deviate from a perfect blackbody spectrum, producing a so-called μ-distortion. We can calculate the correlation (μ T) of this distortion with the temperature anisotropy T of the CMB to search for a correlation ( B{sup 2}ζ) between the magnetic field B and the curvature perturbation ζ; knowing the ( B{sup 2}ζ) correlation would help us distinguish between different models of magnetogenesis. Since the perturbations which produce the μ-distortion will be much smaller scale than the relevant density perturbations, the observation of this correlation is sensitive to the squeezed limit of ( B{sup 2}ζ), which is naturally parameterized by b{sub NL} (a parameter defined analogously to f{sub NL}). We find that a PIXIE-like CMB experiments has a signal to noise S/N≈ 1.0 × b{sub NL} ( B-tilde {sub μ}/10nG){sup 2}, where B-tilde {sub μ} is the magnetic field's strength on μ-distortion scales normalized to today's redshift; thus, a 10 nG field would be detectable with b{sub NL}=O(1). However, if the field is of inflationary origin, we generically expect it to be accompanied by a curvature bispectrum (ζ{sup 3}) induced by themore » magnetic field. For sufficiently small magnetic fields, the signal ( B{sup 2} ζ) will dominate, but for B-tilde {sub μ}∼> 1 nG, one would have to consider the specifics of the inflationary magnetogenesis model. We also discuss the potential post-magnetogenesis sources of a ( B{sup 2}ζ) correlation and explain why there will be no contribution from the evolution of the magnetic field in response to the curvature perturbation.« less
Authors:
;  [1]
  1. CP"3-Origins, Center for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)
Publication Date:
OSTI Identifier:
22373408
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2014; Journal Issue: 08; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ANISOTROPY; BARYONS; CORRELATIONS; MAGNETIC FIELDS; NOISE; ORIGIN; PERTURBATION THEORY; PHOTONS; PLASMA; RED SHIFT; SIGNALS; SPECTRA