skip to main content

Title: Heating mechanisms for intermittent loops in active region cores from AIA/SDO EUV observations

We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the 'warm' contributions to the emission. HMI/SDO data allow us to focus on 'inter-moss' regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min{sup –1} and 0.7 min{sup –1}. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Verymore » similar results are found for the energy dissipation in a 2D 'hybrid' shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops.« less
Authors:
; ;  [1] ;  [2] ;  [3]
  1. Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States)
  2. Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN (United Kingdom)
  3. Universita della Calabria, Dipartimento di Fisica and Centro Nazionale Interuniversitario Struttura della Materia, Unita di Cosenza, I-87030 Arcavacata di Rende (Italy)
Publication Date:
OSTI Identifier:
22370312
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 795; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COOLING; ELECTRON TEMPERATURE; EMISSION; ENERGY ABSORPTION; ENERGY LOSSES; ENERGY SOURCES; EVOLUTION; HEAT EXCHANGERS; HYBRIDIZATION; MAGNETOHYDRODYNAMICS; SHELL MODELS; SIMULATION; SPECTRA; SUN; TURBULENCE