skip to main content

SciTech ConnectSciTech Connect

Title: Optimization of NANOGrav's time allocation for maximum sensitivity to single sources

Pulsar timing arrays (PTAs) are a collection of precisely timed millisecond pulsars (MSPs) that can search for gravitational waves (GWs) in the nanohertz frequency range by observing characteristic signatures in the timing residuals. The sensitivity of a PTA depends on the direction of the propagating GW source, the timing accuracy of the pulsars, and the allocation of the available observing time. The goal of this paper is to determine the optimal time allocation strategy among the MSPs in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) for a single source of GW under a particular set of assumptions. We consider both an isotropic distribution of sources across the sky and a specific source in the Virgo cluster. This work improves on previous efforts by modeling the effect of intrinsic spin noise for each pulsar. We find that, in general, the array is optimized by maximizing time spent on the best-timed pulsars, with sensitivity improvements typically ranging from a factor of 1.5 to 4.
Authors:
; ; ; ;  [1] ;  [2]
  1. Franklin and Marshall College, Department of Physics and Astronomy, Lancaster, PA 17604 (United States)
  2. Department of Physics, Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)
Publication Date:
OSTI Identifier:
22370303
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 794; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCURACY; ALLOCATIONS; DISTRIBUTION; FREQUENCY RANGE; GRAVITATIONAL WAVES; NOISE; OPTIMIZATION; PULSARS; SENSITIVITY; SIMULATION; SKY; SPIN