skip to main content

Title: Pre-late heavy bombardment evolution of the Earth's obliquity

The Earth's obliquity is stabilized by the Moon, which facilitates a rapid precession of the Earth's spin axis, detuning the system away from resonance with orbital modulation. It is, however, likely that the architecture of the solar system underwent a dynamical instability-driven transformation, where the primordial configuration was more compact. Hence, the characteristic frequencies associated with orbital perturbations were likely faster in the past, potentially allowing for secular resonant encounters. In this work, we examine if, at any point in the Earth's evolutionary history, the obliquity varied significantly. Our calculations suggest that even though the orbital perturbations were different, the system nevertheless avoided resonant encounters throughout its evolution. This indicates that the Earth obtained its current obliquity during the formation of the Moon.
Authors:
 [1] ;  [2]
  1. Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States)
  2. Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)
Publication Date:
OSTI Identifier:
22370295
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 795; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CONFIGURATION; DISTURBANCES; INSTABILITY; MOON; PERTURBATION THEORY; PLANETS; PRECESSION; RESONANCE; SOLAR SYSTEM; SPIN; STABILITY; STAR EVOLUTION; TRANSFORMATIONS