skip to main content

Title: The velocity distribution of hypervelocity stars

We consider the process of stellar binaries tidally disrupted by a supermassive black hole (BH). For highly eccentric orbits, as one star is ejected from the three-body system, the companion remains bound to the BH. Hypervelocity stars (HVSs) observed in the Galactic halo and S-stars observed orbiting the central BH may originate from such mechanism. In this paper, we predict the velocity distribution of the ejected stars of a given mass, after they have traveled out of the Galactic potential. We use both analytical methods and Monte Carlo simulations. We find that each part of the velocity distribution encodes different information. At low velocities <800 km s{sup –1}, the Galactic potential universally shapes the observed distribution, which rises toward a peak, related to the Galactic escape velocity. Beyond the peak, the velocity distribution depends on binary mass and separation distributions. Finally, the finite star life introduces a break related to their mass. A qualitative comparison of our models with current observations shows the great potential of HVSs to constrain bulge and Galactic properties. Standard choices for parameter distributions predict velocities below and above ∼800 km s{sup –1} with equal probability, while none are observed beyond ∼700 km s{sup –1} andmore » the current detections are more clustered at low velocities 300-400 km s{sup –1}. These features may indicate that the separation distribution of binaries that reach the tidal sphere is not flat in logarithmic space, as observed in more local massive binaries, but has more power toward larger separations, enhancing smaller velocities. In addition, the binary formation/evolution process or the injection mechanism might also induce a cut-off a {sub min} ∼ 10 R {sub ☉} in the separation distribution.« less
Authors:
 [1] ;  [2] ;  [3]
  1. Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)
  2. Astrophysics Research Institute, Liverpool John Moores University (United Kingdom)
  3. Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel)
Publication Date:
OSTI Identifier:
22370234
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 795; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; BLACK HOLES; COMPARATIVE EVALUATIONS; DETECTION; DISTRIBUTION; GALAXIES; INJECTION; MASS; ORBITS; SPACE; STAR EVOLUTION; STARS; SUPERMASSIVE STARS; THREE-BODY PROBLEM; VELOCITY