skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The SAGES Legacy Unifying Globulars and Galaxies survey (SLUGGS): sample definition, methods, and initial results

Journal Article · · Astrophysical Journal
; ; ; ; ; ; ; ;  [1];  [2]; ; ; ; ;  [3];
  1. University of California Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States)
  2. Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)
  3. Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia)

We introduce and provide the scientific motivation for a wide-field photometric and spectroscopic chemodynamical survey of nearby early-type galaxies (ETGs) and their globular cluster (GC) systems. The SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey is being carried out primarily with Subaru/Suprime-Cam and Keck/DEIMOS. The former provides deep gri imaging over a 900 arcmin{sup 2} field-of-view to characterize GC and host galaxy colors and spatial distributions, and to identify spectroscopic targets. The NIR Ca II triplet provides GC line-of-sight velocities and metallicities out to typically ∼8 R {sub e}, and to ∼15 R {sub e} in some cases. New techniques to extract integrated stellar kinematics and metallicities to large radii (∼2-3 R {sub e}) are used in concert with GC data to create two-dimensional (2D) velocity and metallicity maps for comparison with simulations of galaxy formation. The advantages of SLUGGS compared with other, complementary, 2D-chemodynamical surveys are its superior velocity resolution, radial extent, and multiple halo tracers. We describe the sample of 25 nearby ETGs, the selection criteria for galaxies and GCs, the observing strategies, the data reduction techniques, and modeling methods. The survey observations are nearly complete and more than 30 papers have so far been published using SLUGGS data. Here we summarize some initial results, including signatures of two-phase galaxy assembly, evidence for GC metallicity bimodality, and a novel framework for the formation of extended star clusters and ultracompact dwarfs. An integrated overview of current chemodynamical constraints on GC systems points to separate, in situ formation modes at high redshifts for metal-poor and metal-rich GCs.

OSTI ID:
22370186
Journal Information:
Astrophysical Journal, Vol. 796, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English