skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Generating synthetic magnetic field intermittency using a Minimal Multiscale Lagrangian Mapping approach

Journal Article · · Astrophysical Journal
; ; ; ;  [1]
  1. Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

The Minimal Multiscale Lagrangian Mapping procedure developed in the context of neutral fluid turbulence is a simple method for generating synthetic vector fields. Using a sequence of low-pass filtered fields, fluid particles are displaced at their rms speed for some scale-dependent time interval, and then interpolated back to a regular grid. Fields produced in this way are seen to possess certain properties of real turbulence. This paper extends the technique to plasmas by taking into account the coupling between the velocity and magnetic fields. We examine several possible applications to plasma systems. One use is as initial conditions for simulations, wherein these synthetic fields may efficiently produce a strongly intermittent cascade. The intermittency properties of the synthetic fields are also compared with those of the solar wind. Finally, studies of cosmic ray transport and modulation in the test particle approximation may benefit from improved realism in synthetic fields produced in this way.

OSTI ID:
22370164
Journal Information:
Astrophysical Journal, Vol. 796, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English