skip to main content

Title: A Spitzer five-band analysis of the Jupiter-sized planet TrES-1

With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by Spitzer. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all Spitzer eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 μm (0.083% ± 0.024%, 1270 ± 110 K), 4.5 μm (0.094% ± 0.024%, 1126 ± 90 K), 5.8 μm (0.162% ± 0.042%, 1205 ± 130 K), 8.0 μm (0.213% ± 0.042%, 1190 ± 130 K), and 16 μm (0.33% ± 0.12%, 1270 ± 310 K) bands. The eclipse depths can be explained, within 1σ errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity of e=0.033{sub −0.031}{sup +0.015}, consistent with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios, we implemented optimal photometry and differential-evolution Markov Chain Monte Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits pipeline. Benefits include higher photometric precision and ∼10 times faster MCMC convergence, with better explorationmore » of the phase space and no manual parameter tuning.« less
Authors:
; ; ; ; ;  [1] ;  [2]
  1. Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States)
  2. Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06511 (United States)
Publication Date:
OSTI Identifier:
22370046
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 797; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCURACY; ALGORITHMS; BRIGHTNESS; COMPUTERIZED SIMULATION; ECLIPSE; ELEMENT ABUNDANCE; EMISSION; EQUILIBRIUM; MARKOV PROCESS; MONTE CARLO METHOD; ORBITS; PHASE SPACE; PHOTOMETRY; RADIAL VELOCITY; SIGNAL-TO-NOISE RATIO; STAR EVOLUTION; STARS; TEMPERATURE INVERSIONS