skip to main content

Title: Hemispherical power asymmetry from scale-dependent modulated reheating

We propose a new model for the hemispherical power asymmetry of the CMB based on modulated reheating. Non-Gaussianity from modulated reheating can be small enough to satisfy the bound from Planck if the dominant modulation of the inflaton decay rate is linear in the modulating field σ. σ must then acquire a spatially-modulated power spectrum with a red scale-dependence. This can be achieved if the primordial perturbation of σ is generated via tachyonic growth of a complex scalar field. Modulated reheating due to σ then produces a spatially modulated and scale-dependent sub-dominant contribution to the adiabatic density perturbation. We show that it is possible to account for the observed asymmetry while remaining consistent with bounds from quasar number counts, non-Gaussianity and the CMB temperature quadupole. The model predicts that the adiabatic perturbation spectral index and its running will be modified by the modulated reheating component.
Authors:
 [1]
  1. Lancaster-Manchester-Sheffield Consortium for Fundamental Physics, Cosmology and Astroparticle Physics Group, Dept. of Physics, University of Lancaster, Lancaster LA1 4YB (United Kingdom)
Publication Date:
OSTI Identifier:
22369912
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2013; Journal Issue: 11; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASYMMETRY; DISTURBANCES; PERTURBATION THEORY; QUASARS; SCALAR FIELDS; TACHYONS