skip to main content

Title: The dark energy cosmic clock: a new way to parametrise the equation of state

We propose a new parametrisation of the dark energy equation of state, which uses the dark energy density, Ω{sub e} as a cosmic clock. We expand the equation of state in a series of orthogonal polynomials, with Ω{sub e} as the expansion parameter and determine the expansion coefficients by fitting to SNIa and H(z) data. Assuming that Ω{sub e} is a monotonic function of time, we show that our parametrisation performs better than the popular Chevallier-Polarski-Linder (CPL) and Gerke and Efstathiou (GE) parametrisations, and we demonstrate that it is robust to the choice of prior. Expanding in orthogonal polynomials allows us to relate models of dark energy directly to our parametrisation, which we illustrate by placing constraints on the expansion coefficients extracted from two popular quintessence models. Finally, we comment on how this parametrisation could be modified to accommodate high redshift data, where any non-monotonicity of Ω{sub e} would need to be accounted for.
Authors:
; ; ;  [1]
  1. School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)
Publication Date:
OSTI Identifier:
22369876
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2013; Journal Issue: 12; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ENERGY DENSITY; EQUATIONS OF STATE; EXPANSION; LIMITING VALUES; NONLUMINOUS MATTER; POLYNOMIALS; RED SHIFT; TIME DEPENDENCE