skip to main content

Title: Trispectrum from co-dimension 2(n) Galileons

A generalized theory of multi-field Galileons has been recently put forward. This model stems from the ongoing effort to embed generic Galileon theories within brane constructions. Such an approach has proved very useful in connecting interesting and essential features of these theories with geometric properties of the branes embedding. We investigate the cosmological implications of a very restrictive multi-field Galileon theory whose leading interaction is solely quartic in the scalar field π and lends itself nicely to an interesting cosmology. The bispectrum is characterized by a naturally small amplitude (f{sub NL}∼<1) and an equilateral shape-function. The trispectrum of curvature fluctuations has features which are quite distinctive with respect to their P(X,φ) counterpart. We also show that, despite an absent cubic Lagrangian in the full theory, non-Gaussianities in this model cannot produce the combination of a small bispectrum alongside with a large trispectrum. We further expand on this point to draw a lesson on what having a symmetry in the full background independent theory entails at the level of fluctuations and vice-versa.
Authors:
 [1]
  1. CERCA/Department of Physics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 (United States)
Publication Date:
OSTI Identifier:
22369851
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2013; Journal Issue: 12; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; AMPLITUDES; BRANES; COSMOLOGY; FLUCTUATIONS; LAGRANGIAN FUNCTION; SCALAR FIELDS; SYMMETRY