skip to main content

SciTech ConnectSciTech Connect

Title: SU-E-T-495: Neutron Induced Electronics Failure Rate Analysis for a Single Room Proton Accelerator

Purpose: To determine the failure rate as a function of neutron dose of the range modulator's servo motor controller system (SMCS) while shielded with Borated Polyethylene (BPE) and unshielded in a single room proton accelerator. Methods: Two experimental setups were constructed using two servo motor controllers and two motors. Each SMCS was then placed 30 cm from the end of the plugged proton accelerator applicator. The motor was then turned on and observed from outside of the vault while being irradiated to known neutron doses determined from bubble detector measurements. Anytime the motor deviated from the programmed motion a failure was recorded along with the delivered dose. The experiment was repeated using 9 cm of BPE shielding surrounding the SMCS. Results: Ten SMCS failures were recorded in each experiment. The dose per monitor unit for the unshielded SMCS was 0.0211 mSv/MU and 0.0144 mSv/MU for the shielded SMCS. The mean dose to produce a failure for the unshielded SMCS was 63.5 ± 58.3 mSv versus 17.0 ±12.2 mSv for the shielded. The mean number of MUs between failures were 2297 ± 1891 MU for the unshielded SMCS and 2122 ± 1523 MU for the shielded. A Wilcoxon Signed Ranked testmore » showed the dose between failures were significantly different (P value = 0.044) while the number of MUs between failures were not (P value = 1.000). Statistical analysis determined a SMCS neutron dose of 5.3 mSv produces a 5% chance of failure. Depending on the workload and location of the SMCS, this failure rate could impede clinical workflow. Conclusion: BPE shielding was shown to not reduce the average failure of the SMCS and relocation of the system outside of the accelerator vault was required to lower the failure rate enough to avoid impeding clinical work flow.« less
Authors:
; ;  [1]
  1. Washington University School of Medicine, St Louis, MO (United States)
Publication Date:
OSTI Identifier:
22369636
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
07 ISOTOPES AND RADIATION SOURCES; 60 APPLIED LIFE SCIENCES; ACCELERATORS; BORATES; IRRADIATION; POLYETHYLENES; SHIELDING