skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-494: A MOSFET-Based In-Vivo Dosimetry System for MR Image-Guided Radiation Therapy (MR-IGRT)

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4888827· OSTI ID:22369635
; ; ; ; ; ; ; ;  [1]
  1. Washington University School of Medicine, St Louis, MO (United States)

Purpose: To determine if a MOSFET based in-vivo dosimetry system can be used for patients undergoing MR-IGRT. Methods: Standard and high sensitivity MOSFET detectors were used for in-field and out-of-field measurements respectively. The systems were benchmarked and calibrated against a calibrated ionization chamber on a standard 6 MV linear accelerator, and then on the MR-IGRT system. Known doses were delivered to a water phantom with the MOSFETs placed between the top of the phantom and underneath a layer of bolus and water equivalent plastic, using a 6 MV beam and a {sup 6} {sup 0}Co MR-IGRT beam. The latter was performed with and without real-time MRI-guidance during the beam delivery (MRIGRT). Results: The in-field dosimeter response was linear from 50-500 cGy with little evidence of energy dependence or change in response due to the permanent static magnetic field of the MR-IGRT system. The detector response varied by < 2% between 6 MV and {sup 6} {sup 0}Co without image guided delivery. The out-of-field dosimeter response was linear from 1-50 cGy; however the detectors did display dose rate and energy dependence as the response varied by > 20% depending on distance from isocenter used during calibration. Therefore, to use the dosimeters for out-of-field measurements they must be calibrated out-of-field. Regardless of the detector orientation in the coronal plan, the response of the MOSFETs during MRI-guided delivery increased by 5% due to induced currents from the dynamic magnetic field present with image guidance. During the MRI-guided delivery, some loss in image quality was seen when the MOSFETs were present in the imaging plane. This was mitigated by using a handheld reader without a transmitting wireless receiver. Conclusion: A MOSFET-based in-vivo dosimetry system can be used for patients receiving MR-IGRT; however the change in detector response due to the dynamic magnetic field requires a special calibration.

OSTI ID:
22369635
Journal Information:
Medical Physics, Vol. 41, Issue 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English