skip to main content

SciTech ConnectSciTech Connect

Title: MAGNETICALLY DRIVEN WINDS FROM DIFFERENTIALLY ROTATING NEUTRON STARS AND X-RAY AFTERGLOWS OF SHORT GAMMA-RAY BURSTS

Besides being among the most promising sources of gravitational waves, merging neutron star binaries also represent a leading scenario to explain the phenomenology of short gamma-ray bursts (SGRBs). Recent observations have revealed a large subclass of SGRBs with roughly constant luminosity in their X-ray afterglows, lasting 10-10{sup 4} s. These features are generally taken as evidence of a long-lived central engine powered by the magnetic spin-down of a uniformly rotating, magnetized object. We propose a different scenario in which the central engine powering the X-ray emission is a differentially rotating hypermassive neutron star (HMNS) that launches a quasi-isotropic and baryon-loaded wind driven by the magnetic field, which is built-up through differential rotation. Our model is supported by long-term, three-dimensional, general-relativistic, and ideal magnetohydrodynamic simulations, showing that this isotropic emission is a very robust feature. For a given HMNS, the presence of a collimated component depends sensitively on the initial magnetic field geometry, while the stationary electromagnetic luminosity depends only on the magnetic energy initially stored in the system. We show that our model is compatible with the observed timescales and luminosities and express the latter in terms of a simple scaling relation.
Authors:
; ;  [1]
  1. Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am M├╝hlenberg 1, D-14476 Potsdam-Golm (Germany)
Publication Date:
OSTI Identifier:
22365916
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 785; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; AFTERGLOW; BINARY STARS; COSMIC GAMMA BURSTS; GRAVITATIONAL WAVES; LUMINOSITY; MAGNETIC FIELDS; MAGNETOHYDRODYNAMICS; NEUTRON STARS; RELATIVISTIC RANGE; ROTATION; SPIN; STAR MODELS; THREE-DIMENSIONAL CALCULATIONS; X RADIATION