skip to main content

SciTech ConnectSciTech Connect

Title: SALPETER NORMALIZATION OF THE STELLAR INITIAL MASS FUNCTION FOR MASSIVE GALAXIES AT z ∼ 1

The stellar initial mass function (IMF) is a key parameter for studying galaxy evolution. Here we measure the IMF mass normalization for a sample of 68 field galaxies in the redshift range 0.7-0.9 within the Extended Groth Strip. To do this we derive the total (stellar + dark matter) mass-to-light [(M/L)] ratio using axisymmetric dynamical models. Within the region where we have kinematics (about one half-light radius), the models assume (1) that mass follows light, implying negligible differences between the slope of the stellar and total density profiles, (2) constant velocity anisotropy (β{sub z}≡1−σ{sub z}{sup 2}/σ{sub R}{sup 2}=0.2), and (3) that galaxies are seen at the average inclination for random orientations (i.e., i = 60°, where i = 90° represents edge-on). The dynamical models are based on anisotropic Jeans equations, constrained by Hubble Space Telescope/Advanced Camera for Surveys imaging and the central velocity dispersion of the galaxies, extracted from good-quality spectra taken by the DEEP2 survey. The population (M/L) are derived from full-spectrum fitting of the same spectra with a grid of simple stellar population models. Recent dynamical modeling results from the ATLAS{sup 3D} project and numerical simulations of galaxy evolution indicate that the dark matter fraction within the centralmore » regions of our galaxies should be small. This suggests that our derived total (M/L) should closely approximate the stellar M/L. Our comparison of the dynamical (M/L) and the population (M/L) then implies that for galaxies with stellar mass M {sub *} ≳ 10{sup 11} M {sub ☉}, the average normalization of the IMF is consistent with a Salpeter slope, with a substantial scatter. This is similar to what is found within a similar mass range for nearby galaxies.« less
Authors:
;  [1]
  1. Sub-Department of Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)
Publication Date:
OSTI Identifier:
22365866
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 786; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ANISOTROPY; APPROXIMATIONS; AXIAL SYMMETRY; CAMERAS; COMPARATIVE EVALUATIONS; COMPUTERIZED SIMULATION; EMISSION SPECTRA; GALACTIC EVOLUTION; GALAXIES; INCLINATION; MASS; NONLUMINOUS MATTER; RANDOMNESS; RED SHIFT; STAR MODELS; TELESCOPES; VISIBLE RADIATION