skip to main content

SciTech ConnectSciTech Connect

Title: A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid

The paper is concerned with the topological analysis of the Chaplygin integrable case in the dynamics of a rigid body in a fluid. A full list of the topological types of Chaplygin systems in their dependence on the energy level is compiled on the basis of the Fomenko-Zieschang theory. An effective description of the topology of the Liouville foliation in terms of natural coordinate variables is also presented, which opens a direct way to calculating topological invariants. It turns out that on all nonsingular energy levels Chaplygin systems are Liouville equivalent to the well-known Euler case in the dynamics of a rigid body with fixed point. Bibliography: 23 titles.
Authors:
 [1]
  1. M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)
Publication Date:
OSTI Identifier:
22365742
Resource Type:
Journal Article
Resource Relation:
Journal Name: Sbornik. Mathematics; Journal Volume: 205; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; CLASSIFICATION; COORDINATES; ENERGY LEVELS; FLUIDS; INTEGRAL CALCULUS; MATHEMATICAL SOLUTIONS; TOPOLOGY