skip to main content

Title: On the geometry of a smooth model of a fibre product of families of K3 surfaces

The Hodge conjecture on algebraic cycles is proved for a smooth projective model X of a fibre product X{sub 1}×{sub C}X{sub 2} of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) X{sub k}→C (k=1,2) over a smooth projective curve C under the assumption that, for generic geometric fibres X{sub 1s} and X{sub 2s}, the ring End{sub Hg(X{sub 1{sub s)}}}NS{sub Q}(X{sub 1s}){sup ⊥} is an imaginary quadratic field, rankNS(X{sub 1s})≠18, and End{sub Hg(X{sub 2{sub s)}}}NS{sub Q}(X{sub 2s}){sup ⊥} is a totally real field or else rankNS(X{sub 1s})
Authors:
 [1]
  1. A.G. and N.G.Stoletov Vladimir State University, Vladimir (Russian Federation)
Publication Date:
OSTI Identifier:
22365738
Resource Type:
Journal Article
Resource Relation:
Journal Name: Sbornik. Mathematics; Journal Volume: 205; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; DIAGRAMS; FIBERS; GEOMETRY; MATHEMATICAL MODELS; MATHEMATICAL OPERATORS; MATHEMATICAL SOLUTIONS; MATHEMATICAL SPACE; SURFACES