skip to main content

Title: AN ATMOSPHERIC STRUCTURE EQUATION FOR GRAIN GROWTH

We present a method to include the evolution of the grain size and grain opacity κ{sub gr} in the equations describing the structure of protoplanetary atmospheres. The key assumption of this method is that a single grain size dominates the grain size distribution at any height r. In addition to following grain growth, the method accounts for mass deposition by planetesimals and grain porosity. We illustrate this method by computation of a simplified atmosphere structure model. In agreement with previous works, grain coagulation is seen to be very efficient. The opacity drops to values much below the often-used ''interstellar medium opacities'' (∼1 cm{sup 2} g{sup –1}) and the atmosphere structure profiles for temperature and density resemble that of the grain-free case. Deposition of planetesimals in the radiative part of the atmosphere hardly influences this outcome as the added surface is quickly coagulated away. We observe a modest dependence on the internal structure (porosity), but show that filling factors cannot become too large because of compression by gas drag.
Authors:
 [1]
  1. Astronomy Department, University of California, Berkeley, CA 94720 (United States)
Publication Date:
OSTI Identifier:
22365736
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 789; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CALCULATION METHODS; COMPRESSION; DENSITY; DEPOSITION; GRAIN GROWTH; GRAIN SIZE; OPACITY; PLANETS; POROSITY; PROTOPLANETS; SATELLITE ATMOSPHERES; SATELLITES; SURFACES