skip to main content

Title: Neutrino emission in the jet propagation process

Relativistic jets are universal in long-duration gamma-ray burst (GRB) models. Before breaking out, they must propagate in the progenitor envelope along with a forward shock and a reverse shock forming at the jet head. Both electrons and protons will be accelerated by the shocks. High-energy neutrinos could be produced by these protons interacting with stellar materials and electron-radiating photons. The jet will probably be collimated, which may have a strong effect on the final neutrino flux. Under the assumption of a power-law stellar-envelope density profile ρ∝r {sup –α} with index α, we calculate the neutrino emission flux by these shocks for low-luminosity GRBs (LL-GRBs) and ultra-long GRBs (UL-GRBs) in different collimation regimes, using the jet propagation framework developed by Bromberg et al. We find that LL-GRBs and UL-GRBs are capable of producing detectable high-energy neutrinos up to ∼PeV, from which the final neutrino spectrum can be obtained. Further, we conclude that a larger α corresponds to greater neutrino flux at the high-energy end (∼PeV) and to higher maximum neutrino energy as well. However, such differences are so small that it is not promising for us to be able to distinguish these in observations, given the energy resolution we have now.
Authors:
;  [1]
  1. School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)
Publication Date:
OSTI Identifier:
22365566
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 790; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COSMIC GAMMA BURSTS; DENSITY; ELECTRONS; EMISSION; ENERGY RESOLUTION; LUMINOSITY; NEUTRINOS; PHOTONS; PROTONS; RELATIVISTIC RANGE; SPECTRA