skip to main content

Title: Detection of exomoons through observation of radio emissions

In the Jupiter-Io system, the moon's motion produces currents along the field lines that connect it to Jupiter's polar regions. The currents generate and modulate radio emissions along their paths via the electron-cyclotron maser instability. Based on this process, we suggest that such modulation of planetary radio emissions may reveal the presence of exomoons around giant planets in exoplanetary systems. A model explaining the modulation mechanism in the Jupiter-Io system is extrapolated and used to define criteria for exomoon detectability. A cautiously optimistic scenario of the possible detection of such exomoons around Epsilon Eridani b and Gliese 876 b is provided.
Authors:
; ;  [1]
  1. The Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)
Publication Date:
OSTI Identifier:
22365417
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 791; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; DETECTION; EMISSION; EVOLUTION; INSTABILITY; JUPITER PLANET; MICROWAVE AMPLIFIERS; MODULATION; MOON; SATELLITES; STABILITY