skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron-ion equilibrium and shock precursors in the northeast limb of the Cygnus Loop

Journal Article · · Astrophysical Journal
; ; ; ;  [1]
  1. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

We present an observational study using high-resolution echelle spectroscopy of collisionless shocks in the Cygnus Loop supernova remnant. Measured Hα line profiles constrain pre-shock heating processes, shock speeds, and electron-ion equilibration (T{sub e} /T{sub i} ). The shocks produce faint Hα emission line profiles, which are characterized by narrow and broad components. The narrow component is representative of the pre-shock conditions, while the broad component is produced after charge transfer between neutrals entering the shock and protons in the post-shock gas, thus reflecting the properties of the post-shock gas. We observe a diffuse Hα region extending about 2.'5 ahead of the shock with line width ∼29 km s{sup –1}, while the Hα profile of the shock itself consists of broader than expected narrow (36 km s{sup –1}) and broad (250 km s{sup –1}) components. The observed diffuse emission arises in a photoionization precursor heated to about 18,000 K by He I and He II emission from the shock, with additional narrow component broadening originating from a thin cosmic-ray precursor. Broad to narrow component intensity ratios of ∼1.0 imply full electron-ion temperature equilibration T{sub e} ≅ T{sub i} in the post-shock region. Broad component line widths indicate shock velocities of about 400 km s{sup –1}. Combining the shock velocities with proper motions suggests that the distance to the Cygnus Loop is ∼890 pc, significantly greater than the generally accepted upper limit of 637 pc.

OSTI ID:
22365398
Journal Information:
Astrophysical Journal, Vol. 791, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English