skip to main content

Title: White dwarf cosmochronology in the solar neighborhood

The study of the stellar formation history in the solar neighborhood is a powerful technique to recover information about the early stages and evolution of the Milky Way. We present a new method that consists of directly probing the formation history from the nearby stellar remnants. We rely on the volume complete sample of white dwarfs within 20 pc, where accurate cooling ages and masses have been determined. The well characterized initial-final mass relation is employed in order to recover the initial masses (1 ≲ M {sub initial}/M {sub ☉} ≲ 8) and total ages for the local degenerate sample. We correct for moderate biases that are necessary to transform our results to a global stellar formation rate, which can be compared to similar studies based on the properties of main-sequence stars in the solar neighborhood. Our method provides precise formation rates for all ages except in very recent times, and the results suggest an enhanced formation rate for the solar neighborhood in the last 5 Gyr compared to the range 5 < Age (Gyr) < 10. Furthermore, the observed total age of ∼10 Gyr for the oldest white dwarfs in the local sample is consistent with the early seminalmore » studies that have determined the age of the Galactic disk from stellar remnants. The main shortcoming of our study is the small size of the local white dwarf sample. However, the presented technique can be applied to larger samples in the future.« less
Authors:
; ; ;  [1] ;  [2]
  1. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
  2. Center for Astrophysical Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)
Publication Date:
OSTI Identifier:
22365322
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 791; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COMPARATIVE EVALUATIONS; EVOLUTION; MAIN SEQUENCE STARS; MASS; MILKY WAY; STAR EVOLUTION; SUN; WHITE DWARF STARS