skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New constraints on cosmic polarization rotation from B-mode polarization in the cosmic microwave background

Journal Article · · Astrophysical Journal
 [1]; ;  [2]
  1. INAF—Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy)
  2. Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 30013 (China)

SPTpol, POLARBEAR, and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the components due to gravitational lensing and to inflationary gravitational waves. We analyze jointly the results of these three experiments and propose modifications to their analyses of the spectra to include in the model, in addition to the gravitational lensing and the inflationary gravitational wave components, and also the effects induced by the cosmic polarization rotation (CPR), if it exists within current upper limits. Although in principle our analysis would also lead to new constraints on CPR, in practice these can only be given on its fluctuations (δα{sup 2}), since constraints on its mean angle are inhibited by the derotation which is applied by current CMB polarization experiments, in order to cope with the insufficient calibration of the polarization angle. The combined data fits from all three experiments (with 29% CPR-SPTpol correlation, depending on the theoretical model) gives the constraint (δα{sup 2}){sup 1/2} < 27.3 mrad (1.°56), with r = 0.194 ± 0.033. These results show that the present data are consistent with no CPR detection and the constraint on CPR fluctuation is about 1.°5. This method of constraining the CPR is new, is complementary to previous tests, which use the radio and optical/UV polarization of radio galaxies and the CMB E-mode polarization, and adds a new constraint for the sky areas observed by SPTpol, POLARBEAR, and BICEP2.

OSTI ID:
22365219
Journal Information:
Astrophysical Journal, Vol. 792, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English