skip to main content

SciTech ConnectSciTech Connect

Title: Energy-dependent evolution in IC10 X-1: hard evidence for an extended corona and implications

We have analyzed a ∼130 ks XMM-Newton observation of the dynamically confirmed black hole + Wolf-Rayet (BH+WR) X-ray binary (XB) IC10 X-1, covering ∼1 orbital cycle. This system experiences periodic intensity dips every ∼35 hr. We find that energy-independent evolution is rejected at a >5σ level. The spectral and timing evolution of IC10 X-1 are best explained by a compact disk blackbody and an extended Comptonized component, where the thermal component is completely absorbed and the Comptonized component is partially covered during the dip. We consider three possibilities for the absorber: cold material in the outer accretion disk, as is well documented for Galactic neutron star (NS) XBs at high inclination; a stream of stellar wind that is enhanced by traveling through the L1 point; and a spherical wind. We estimated the corona radius (r {sub ADC}) for IC10 X-1 from the dip ingress to be ∼10{sup 6} km, assuming absorption from the outer disk, and found it to be consistent with the relation between r {sub ADC} and 1-30 keV luminosity observed in Galactic NS XBs that spans two orders of magnitude. For the other two scenarios, the corona would be larger. Prior BH mass (M {sub BH}) estimatesmore » range over 23-38 M {sub ☉}, depending on the inclination and WR mass. For disk absorption, the inclination, i, is likely to be ∼60-80°, with M {sub BH} ∼ 24-41 M {sub ☉}. Alternatively, the L1-enhanced wind requires i ∼ 80°, suggesting ∼24-33 M {sub ☉}. For a spherical absorber, i ∼ 40°, and M {sub BH} ∼ 50-65 M {sub ☉}.« less
Authors:
; ;  [1] ;  [2] ; ;  [3]
  1. Harvard-Smithsonian Center for Astrophysics (CFA), Cambridge, MA 02138 (United States)
  2. School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)
  3. The Open University, Milton Keynes (United Kingdom)
Publication Date:
OSTI Identifier:
22365092
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 792; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABSORPTION; ACCRETION DISKS; BINARY STARS; BLACK HOLES; COSMIC X-RAY SOURCES; ENERGY DEPENDENCE; INCLINATION; LUMINOSITY; MASS; NEUTRON STARS; PERIODICITY; SPHERICAL CONFIGURATION; STAR EVOLUTION; STELLAR WINDS; STREAMS; WOLF-RAYET STARS; X RADIATION