skip to main content

SciTech ConnectSciTech Connect

Title: DIAGNOSING MASS FLOWS AROUND HERBIG Ae/Be STARS USING THE HE I λ10830 LINE

We examine He I λ10830 profile morphologies for a sample of 56 Herbig Ae/Be stars (HAEBES). We find significant differences between HAEBES and classical T-Tauri stars (CTTS) in the statistics of both blueshifted absorption (i.e., mass outflows) and redshifted absorption features (i.e., mass infall or accretion). Our results suggest that, in general, Herbig Be (HBe) stars do not accrete material from their inner disks in the same manner as CTTS, which are believed to accrete material via magnetospheric accretion, whereas Herbig Ae (HAe) stars generally show evidence for magnetospheric accretion. We find no evidence in our sample of narrow blueshifted absorption features, which are typical indicators of inner disk winds and are common in He I λ10830 profiles of CTTS. The lack of inner-disk-wind signatures in HAEBES, combined with the paucity of detected magnetic fields on these objects, suggests that accretion through large magnetospheres that truncate the disk several stellar radii above the surface is not as common for HAe and late-type HBe stars as it is for CTTS. Instead, evidence is found for smaller magnetospheres in the maximum redshifted absorption velocities in our HAEBE sample. These velocities are, on average, a smaller fraction of the system escape velocity thanmore » is found for CTTS, suggesting accretion is taking place closer to the star. Smaller magnetospheres, and evidence for boundary layer accretion in HBe stars, may explain the less common occurrence of redshifted absorption in HAEBES. Evidence is found that smaller magnetospheres may be less efficient at driving outflows compared to CTTS magnetospheres.« less
Authors:
 [1] ;  [2]
  1. Department of Astronomy, Wesleyan University, 45 Wyllys Avenue, Middletown, CT 06459 (United States)
  2. Department of Physics and Astronomy, Rice University, 6100 Main Street, MS 108, Houston, TX 77005 (United States)
Publication Date:
OSTI Identifier:
22364830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 797; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABSORPTION; ACCRETION DISKS; BOUNDARY LAYERS; COMPARATIVE EVALUATIONS; HELIUM; MAGNETIC FIELDS; MASS; MORPHOLOGY; RED SHIFT; STAR ACCRETION; STELLAR MAGNETOSPHERES; STELLAR WINDS; T TAURI STARS; VELOCITY